

Tokenization Interest Group Webinar Series— Token Economics and Blockchain Security: Cyber, Information, Crosschain Mechanics Benjamin Bukari, Co-Chair, EEA Tokenization Interest Group Weijia Zhang, Co-Chair, EEA Crosschain Interoperability Group

Contents

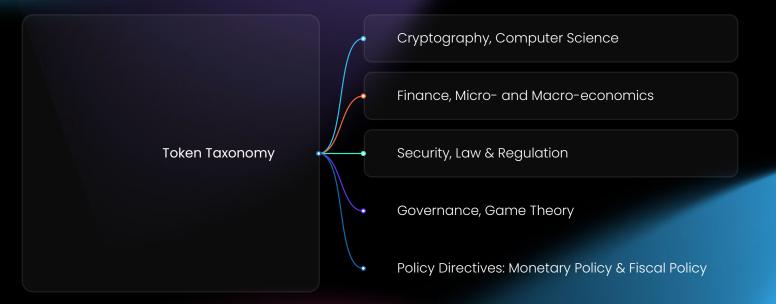
Token Taxonomy Crosschain Security

2

Smart Contract Development

3

Information Security Cybersecurity Data Privacy


А

Token Taxonomy

Token Taxonomy: Economic Designs for Distributed Systems

Crosschain Security

TOP 10 CROSSCHAIN BRIDGE HACKS

1.874 billion / year

2022-08-02	Nomad	Asset verification vulnerability	150
2022-06-24	Horizon	Validator private keys stolen	100
2022-03-29	Ronin Network	Attack on validator nodes	600
2022-03-20	Li.Finance	Vulnerability in getting external data	0.6
2022-02-06	Meter.io	Deposit verification vulnerability	4.2
2022-02-03	Womhole	Vulnerability of signature verification forgery	320
2022-01-28	Qbridge bridge	Deposit function vulnerability	80
2021-01-18	Multichain	Parameter management vulnerability	1.43
2021-08-10	Poly Network	Validator's Relayer public key replaced	610
2021-07-11	Chainswap	Consensus signature vulnerability	8

EEA Crosschain Security Guidelines Version 1.0 EEA Publication 28 July 2022

ENTERPRISE ETHEREUM ALLIANCE

Latest published version:

https://entethalliance.github.io/crosschain-interoperability/crosschainsecurityguidelines.html

Editors:

Weijia Zhang, PhD (Wanchain) Peter Robinson (Consensys) Aiman Baharna (Clearmatics)

Copyright © 2021-2022 Enterprise Ethereum Alliance

Complexity of Blockchain Security

Complexity of blockchain security

Decentralized nature of blockchain

Constraints of patches and upgradability

Trustless and permissionless environment

Private and anonymous nature of blockchain

High value impact on business

Decentralization nature of blockchain

Any code written and deployed to the blockchain is going to run in thousands of machines

Anybody can access and run blockchain code

Constraints of patches and upgradability

Smart contracts deployed to blockchains cannot be modified

When security flaws are detected in blockchain applications, the cost of patching the applications is high and sometimes a fork of the blockchain is needed

Trustless and permissionless environment

For public blockchains, both the client nodes and decentralized applications are open to global participants

There is no security perimeter to block bad players from participating

Privacy and anonymous nature of blockchain

?

Blockchain users can remain anonymous

O_x

Smart contract functions do not have a way to check the profile of the users

Hackers can carry out blockchain attacks, get the assets, and remain unidentified

High value impact on business

Smart contracts manage high value crypto assets and each attack might bring catastrophic results to the decentralized application

Some decentralized applications have suffered huge losses due to simple errors in smart contracts

HACKING TECHNIQUES

Cybersecurity

Smart Contracts

Web3

Phishing Malware Ransomware Spoofing Adware Zero Day threat Brute Force Attack Bot Botnet DDOS Rootkit RAT Rug Pull Function Vulnerabilities
Data Type and Data Vulnerabilities
Compiler Vulnerabilities
Randomness Vulnerability
Signature Vulnerability

Verification and Proof Construction of TXs User Interactions Tx signing

CROSSCHAIN SECURITY: BLOCKCHAIN LAYER

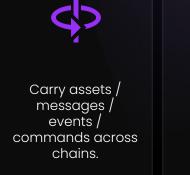
Discovery and identification of blockchains.

ChainIds: EIP155, EIP3220

Chain protocols: open protocol, XIPs

CROSSCHAIN SECURITY: CONSENSUS LAYER

Who runs as miners for the native chains.


What consensus algorithm is used for the blockchains. What finality does the consensus algorithm supply given the configuration.

What are the risks of blockchain rollbacks and forks.

CROSSCHAIN SECURITY: RELAYER LAYER

Is an off-chain operation.

Can be permissioned or permissionless.

$\mathbf{\mathbf{v}}$		

Permissioned: Governed by the integrity and truthfulness of the relayer administrators.

Permissionless: Guarded by asset staking, randomness, and multi-party computing.

CROSSCHAIN SECURITY: SMART CONTRACT LAYER

The smart contract private key guarded with Hardware Security Module (HSM), Key Management System (KMS), hardware wallet, offline wallet, or secure vault technology.

Shared ownership with a multi-signature wallet.

×

Denounce the ownership of the smart contract.

Has drawback of no updatability.

CROSSCHAIN SECURITY: ORACLE LAYER

External to source chain, target chain and relayers.

Choose a trusted oracle service.

K Z K Z

More work needs to be done in this area.

CROSSCHAIN SECURITY: WEB SERVICE LAYER

Dapps have a web service layer that aggregate user actions and transform them into blockchain transaction raw data.

All cybersecurity considerations for the web should be followed.

Separate private key storage and transaction signing from any web services.

CROSSCHAIN SECURITY: ADMINISTRATOR ACCOUNT

Administrator account hacking has happened multiple times

Deploy smart contract with hardware wallet or offline wallets

CROSSCHAIN SECURITY: USING MPC

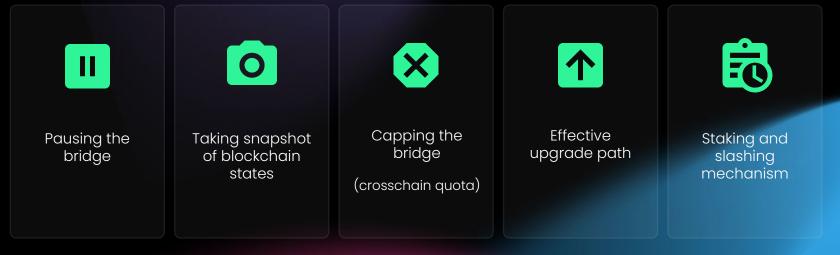
Use MPC (multi-party computing) to safeguard the private key of for smart contract or lock account.

Shard a private key into multiple segments and each entity has a portion of the private key.

The private key is never created or stored.

Each MPC node signs the transactions individually. The group signed transaction is verified.

 \checkmark



CROSSCHAIN SECURITY: STAKING AND SLASHING

FACTORS TO CONSIDER FOR CROSSCHAIN EMERGENCY HANDLING

Smart Contract Development

- Extensions (Smart contract modeling)
- Upgradeability
- New Releases & API Security
- Access Controls
- Role-Based Access Controls

Information Security, Cybersecurity, Data Privacy

Information Security, Cybersecurity, Data Privacy

 Goals, Hacks and Vulnerabilities, Best Practices

Policy Directives for

 Critical Infrastructure, NIST, ISO, SOC 2-3 Compliance

Questions

